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ABSTRACT

A Green's function method is used to find the low temperature

Schange in the specific heat due to a (110) surface on a simple

cubic monatomic lattice. Two separate first neighbor force con-

stant models are used for the calculation: the first assumes that

the atomic motion normal to the surface is uncoupled from motion

parallel to the surface; the second is the familiar two force con-

stant model popularized by Montroll and Potts Both models are

anisotropic in the surface and neither satisfies the condition of

rotational invariance. Analytic expressions are found for the sur-

face mode dispersion relations and for the low temp-rature specific

heat. It is found that for smnll deviations from isotropy, the

change in the specific heat is independent of the model and is the

same for the (110) and (100) surfaces.
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THE SPECIFIC HEAT OF AN ANISOTROPIC SURFACE

There have been a number of studies of the change in the

specific heat due to the presence of a surface from both the
1

continuum and the discrete lattice points of view. In every

study for which an analytic result is obtained, however, the cal-

culation has been restricted to force models that are either iso-

tropic in the -alk of the crystal or isotropic in the plane of the

surface.

In this paper, we will obtain the change in the specific heat

due to a (110) surface on a siimple cubic monatomic lattice. The

lattice will be described by two models, both of which use two first

neighbor force constants. The major interest in these calculations

comes from the fact that the two models used are anisotropic in the
S~(110) surface and from the fact that the models are sufficiently

simple for the entire calculation to be carried out analytically.

The models have the disadvantage, however, that they do not satisfy

rotational invariance and therefore the results must be interpreted

accordingly.
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I. SURFACE MODES

The Cartesian coordinate system will be situated s,.,2 ,a that the

x and ^ unit vectors lie in the plane of the surface ( Figure 1).

In the harmonic approximation, the force on the 0 th at ý:.i is:

F (0) = mU (0) =- 4 (0)u (t) (1.1)

where m is the mass of each atom and u01 (4.) is the d.spljacement

from equilibrium of the tth atom in the a-Cartesian Jiirection.

The particular crystal models to be consid•,red are d,'termined by

specifying the values of the force constants 4) (04f). In this

paper, the force constants 4,(0t) are zero unless the index t.

refers to one of the six nearest neighbors of the 0th atom. The

labelling we will use for four of these neighbors is shown in

Figure 1. Atoms labelled 5 and 6 are located at ±a (1,0,0).

A. Model I, Equations of Motion

The first model to be considered involves central and

non-central nearest neighbor forces def,.ned such that the motion

of the ions in any one of the Cartesian directions is uncoupled

from the motion in any other direction. The equations of motion

for '. bulk atom in this zodel are:

mu x (0) = 6[ ux (5)+ux (6) -2u (0)]+8[ux (1)±+ux (2)+ux (3)+ux (4)-4u (0)]

mUy (0) = P[ y (5)+uy (6)-2u (0)]+[u YU (1)+u y (2)+u y (3)+uy (4)-4u (0)]

mll zk0) = ý[uz (5)+u z(6)-2u z(0)]+01[U z(1)+u z(2)+Lz (3)+u z(4)-4u z(0)]

(1.2)
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The coefficient p is the non-central force constant defining the

restoring force when the atoms in the bond are displaced perpen-

dicular to the bond direction. The coefficient 6 is the centrAl

force constant for the bonds exterding in the x-direction. The

force constants 6 and B are related to the elastic constants by:

6 =aoCll

(1.3)
a o oC44= a aoC12

and the force constant a is:

.1 (6 + (1.4)ft These relations result from identifying the equations of motion in

the long wavelength limit with the Christoffel equations of elasticity.

The interest in this very simple model stems from the fact

~that it gives rise to Rayleigh waves that are split off from the

bulk modes even though the motion of the ions normal to the surface

is completely uncoupled from the motion of the ions parallel to the

surface. This supports ýhe previous observation2' that a suffi-

cient criterion for the presence of Rayleigh woves is that the cut

bonds be oblique to the sarface.

B. Model II, Equations of Motion

The second model is the now familiar model first suggested

by Rosenstock and Newell4 (and made popular by Montroll and Potts 5).

This model uses two force constants: a central force constant ,

which 6 ives the restoring force when the atoms in a bond are dis-

placed in the direction of the bond, and a non-central force constant
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X which gives the restoring, force when the displacements are per-

pendicular to the bond. Due to our choice of coordinate axes,

these force constants lead to a coupling of the equations of

motion in the y and z direction. The equations of motion for a

bulk atom in this model are:

rail (0) = y [ u (5) +ux (6) -2ux (0) ] + xr[ux (1)+Ux (2) +ux (3) +ux (4) -4ux (0)]

mUy(O) = y[Uy(5)+iUy( 6 )- 2 Uy(O)1 + ½(-)U()U()U~)U()

mmU (0) = X[Uz(5)+u (6)-2u (0)] + ½(y-)E[Uy(1) -u_ (2)+u (3)-u y(4)]

y y- yy y+ I(y+)X)[u (l)+u y(2)+u y(3)+u y(4)-4u y(0)]

mu (0) =X[u (5)+u (6)-2u (0)]+ i2(Y-X)[U (1)-u (0+±u (3)-u (4)]
zz z zy y y y

+ I(y+X) (0z(1)+Uz(2)+uz(3)+uz(4)-4uz(O)] (1.5)

The force constants and elastic constants are related by:

y = aoCl1i (1.6)
Xa =, oC4 4  -oaC 1 2

The interest in this model is partly pedagogical and partly

due to the ability to compare our specific heat results with the

same model calculation for the (100) surface. 1,6

We assume for both models that the displacements of the atoms

can be written as:

u (C) U exp[ik.x(.)+ iwt] (1.7)

where w is the angular frequency and k is the wave vector. To

obtain the dispersion relations for the bulk modes, we make the

usual assumption of cyclic boundary conditions in the three
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Cartesian directions.

By substituting Equation (1.7) into the equations of motion

for the two models, we obtain matrix equations of the form

I ~ (Model I)

(1) 2
D D- MU) 0 0 U 0

10 D2 m2 0 U 0- yy

'." 0 0 D(O)- mW 2 UZL yYY

L0mU (1.8)

(Model II)

D(II)- mW2  0 0 U
xx x

0 D(II)- mW2 D(II)
yy yz

0 DD(I -mu 2  U
yz yy z

It is easily seen that the eigenvectors which diagonalize the

above i'atrices are independent of the value of the wave vector

and are given by:

e I(kj) = 0 1 0 (1.10)

0 0 1

(Model III ) 0:2 0 0;

e (II) (kj) V= 0 1 '-1 ( 1
a• 2" "

-0 1 1

S• r
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The diigonalized matrix elements when set equal to zero give the

frequencies of the bulk modes. These are:

(Model 1)
mw!(k) = ( 6Dl(k)+OD2 (k)

(1.12)

mW 2 () D(I) OD D(k)+aD2)
Smw 1(k) 2

(Model II)

S2 D (II) (k)_+ D2 (k)mwlQk) = -x =YD1(k+D(
I ~xxI 2

mw2 (k) = D(II) - D(II)

2 yy yz

= XDl(k)+1(y+X)D 2 (k)-½(Y-X)D3 (k) (1.13)

mW(k) () + D(II)
• 3yy yz

= XD 1 (k)4(y+X)D2 (k)+½(Y-X)D3 (k)

where:

Dl(k) = 2(1 - cos k ao)
xo0

D2 (k) = 4(1 - cos 1 kyalCos ½ kza 1 )

D3 (k) = 4 sin ½ kyaI sin ½ kzaI (1.14)

and a1 =4•a (1.15)

0

For comparison with the surface modes, we set the component

kz= 0 to obtain the dispersion relations for the bulk modes that

propagate parallel to the surface. This gives:

(Model I, bulk)

2mw2(kxky) = 25(1 - cos k a )+ 4p(] - cos ½ k a1)
1x y xo0 2 1 (1.16)

mI) 3 (kxky) 20(l - cos k ao)+ 4c(l - cos ½ kya 1 )

23
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(Model II, bulk)
mw2(kxky) 2y(l - cos k a )+ 4X(l - cos a

mw2, 3 (kky) = 2X(l - cos kxao)+ 2 (y+X)(l - cos I kya-)

(1.17)

These dispersion relations are shown in Figure 2.

The models we have chosen are sufficiently simple that the

dispersion relations for the surface modes can be determined by

either a direct boundary value calculation7 or a Green's function
8

approach. The mathematical steps for the Green's function method

are the more cumbersome, however, and therefore we will defer to

the boundary value method in this section.

As indicated in Figure 1, we will assume the crystal occupies

the half-space where z > 0. Thus, we will assume periodic boundary

conditions in the x and y directions, but replace the boundary con-

dition in the z direction by the requirement that the sum of all

forces between the atoms on opposite sides of the surface must van-

ish. For our models, these are the forces on atom 0 due to atoms

1 and 2.

C. Model I, Boundary Conditions

The boundary conditions for Model i can be writter.:

Fx = 0 = ý[Ux(1)+u x(2)-2u x(O)]

Fy = 0 = LUy(1)+u y(2)-2u y(0)]

F - 0 = u[uz (1)+U z(2)-2uz(0)] (1.18)Fz z z



Since the x, y, and z atomic displacements in this model are inde-

pendent, these boundary conditions are satisfied by displacements

of the form (1.7). Upon substitution, we obtain the same complex

equation for each condition in (1.18); namely:

ike O=cos : ka (1.19)

IBy writing k in the form:

r Z

kz = kr + iki (1.20)

S~i
rwhere kr and k are real, Equation (1.19) reduces to:

k•• kr a1 0zz
-kz a

zke = I (1 + cos kya 1 ) (1.21)

These relationships are shown graphically in Figure 3. The imagin-

ary component kI (called the attenuation coefficient) leads to anz

amplitude of vibration in Equation (1.7) which varies exponen-

tially with increasing distance from the surface. Solutions wheve

ki is positive are classified as surface waves.

The dispersion curves for the surface modes are found by s b-

stituting the value of the wave vector component k imposed by thez

boundary conditions (1.18) into Equations (1.12). This gives -,he

simple result:

"(Model I, surface)

2Smw12(kx k 26(1 - cos k ao)+ 8(1 - cos k a:,xy xy
(1.22)

mM2 (kky) = 2 - cos k ao)+ ) (l - cos kya
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The&- dispersion curves are shown in Figure 2. Of interest is

to note that for small values of the wave vector k, the dispersion

curves for the surface modes and for the bulk modes are the same

to order k4  Henre, the velocities of sound for the surface modes

are the same as the velocities of scu.d for the bulk modes having

the same polarization and propagation direction.

D. Mdodel II, Boundary Conditions

The boundary conditions for Model II can be written:

Fx 0 = X[u (1)+u (2)-2u (0)]
~Ixx x x

F = 0 = j(y+X)[u y(1)+u y(2)-2u (O)]+ ((y-X)[u (-
Fy Y2)Uz(1)-Uz(2)]

[ Fz = 0 (¥+X)[u ()U(2-U(0)]1+ 1 (y-X)[Uy()U()

(1.23)

For this model, x-displacements of the atoms are independent of

the y and z displacements. By substituting displacements of the

form (1.7) into the equation for the x component of the force, we

obtain Equation (1.19) relating the wave vector components k and
y

kz. For this particular mode, the steps are exactly the same as

those for Model I, and hence we obtain for the surface mode:

(Model II, surface)

Mu2(k k 2Y(1 - cos k a )+ X(l - cos kya 1 ) (1.24)
1 XY yX0

Upon substituting Equation (1.7) into the boundary conditions

for the y and z component of the force, we obtain two coupled equa-

tions in the Fourier coefficients Uy and Uz. In matrix form these

are:



1l a
.(y+X)[cos k kal-e12kzal -i(y-X)sin k kaI U

-i(V-X)sin k kya (y+X)[Gos k ka l-e U U

(1.25)

Upon setting the determinant of this 2x2 matrix equal to zero,

we find the condition on k to be:
z 1

e =cos kyaI i( sin ka (1.26)

By dividing the wave vector component kz into its real and imagin-

ary parts as in (1.20) we obtain:

k I -kia y y 2 +X2 +2yX cos k a 1

e = (1.27)
(y+X) 2

and
tan k r (YX) tan 1 k a1  (1.28)k9za (¥+ X)

In expressions (1.26) and (1.28), the + (-) sign belongs with the

mode j = 2 (3).

Ordinarily when two components of tie motion are coupled,

the form of the displacements which must be used to satisfy the

boundary conditions is not Equation (1.7) but rather a linear com-

bination of the type:

u (,) = D Uj exp[ikj.x(C)+iWt] (1.29)
j=2,3 '

where the label j is added since the qi.antities U and k may differ

for the two modes. This procedure has been fully illustrated by

Gazis, Herman, and Wallis. 7  The models used in this paper, rowever,

i
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are sufficiently simple that the equation that results from this

linear tcombination is a perfect square of the determinant of the

matrix in Equation (1.25). Thus the straightforward calculation

shown above gives the same results for the two coupled modes as

the more involved method.

Since the real part of k is not zero for these two modes,

they are properly classified as generalized Rayleigh waves. The

dependence of k upon k is shown in Figure 3. O interest isz y

the fact that the attenuation coefficient ki increases with k toz y

a finite value at the zone boundar3, whereas for the previous cases,

the attenuation coefficient increased without bound. For the

vibrationo.L modes that have an infinite attentuation coefficient,

only the a~om inhe e surface layer are displaced from equilibrium.

Toe surface mode frequencies are obtained by substituting the

condition (1.26) into the frequency expressions (1.13) for the bulk

modes. The result is two degenerate modes whose frequencies are

given by:

(Model II, surface)

mU), 3 (kxky) = 2X(l-cos kxao)-f 2y) (1-cos kya

The polarizations of the degenerate modes for both models are given

by the eigenvector components in (1.10) and (1.11). An unusual

feature of both models is the fact that we obtain three separate

surface mode branches corresponding to the three different polar-

izations )f the atomic motion. In continuum calculations, for

instance, only one Rayleigh wave is obtainec.
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The surface mode dispersion relations for Model II have been

found previously9 and are shown in Figure 2. The solution for

Model I and Model II are identical in the isotropic limit when

y=X and ý=O, Lut they diverge for other values of the force constants.

II. THE SPECIFIC HEAT

As in the surface mode calculation, the low temperature spec-

ific heat due to the surface perturbation can be found in two ways.

One method deals with the explicit determination of the surface

modes and the perturbed bulk modes prior to calculating the specific

heat. 3  The second method sidesteps the problem of determining the

perturbed modes by using a Green's function approach. Since the

J ~Green's function method is particularly convenient for low temper-

I ~ature calculations where the long wavelength expressions for fre-

quency can be used, we will apply this second method to our present

I problem.

The method we will follow is that reported by Maradudin and
10 11

Ashkin and presented fully by Maradudin and Wallis (hereafter

referred to MW). The method uses the function Q(y2) which is

defined as

=3( 22 2 (2.1)
yj Y+w.(k) y +wj(k)

where w.(k) and wj(k) are the frequencies of the normal modes of

the crystal with a surface and without a surface, respectively.

MW have shown that when the function 0(y 2 ) has a logarithmic sing-

ularity in the limit lyI- 0,

I ira 0(y 2 -A logjy! + o(iogyjy) (2.2)Slyl- 0
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then the change in the specific heat, bCv, is given by:

ACv(T) = 6A C(3)kB(kBT/h) 2 + o(T 2) (2.3)

where CI(3) is the Riemann zeta function, kB is Boltzman's constFnt,

and T is the absolute temperature. The specific heat problem then

reduces to the problem of determining the coefficient A in (2.2).

MW have shown the gener:al form for the function O(y 2 ) to be:

Q(y22 -t(kj,-kj,-y2)
2 2 2kj [y2+, 2(k)]

where the term t(kj,-kj,-y ) is the solution of the integral

equation:

t(kj, k'j',-y 2 ) = V(kj, kj',-y)

V(kj ,-k"j",-y 2 ) 2

k"j t2 2 ~J ,k'j ', (2.5)k ~ " y +Wj,,(k")

and where:

SY(kj,-k'j' I -y 2)(kl- 5(k'-
2 1 xx y y

:x F e., (k~j) •(O,) e 0(-k 'j 1) 6 t +1
(Yot z

x [1 - e - e-ik x(•)] (2.6)

Here, I Lza 1 is the distance between the two crystal surfaces.

The discussion in this section, then, will proceed to:
' _y2
(1) evaluate the term V(kj,-k'j' ) for the two models, (2)

solve the integral equation in (2.5) for t(kj,k'j', ), (3)

perform the integration over the Brillouin zone in the long

I
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wavelength limit indicated in Eq.(2.4), and (4) obtain an analytic

expression for the coefficient A for both models by taking the

limit in Eq.(2.2).

If the eigenvectors e (kj) are inderendent of the wave vector

k, then for a particular value of the index t, the sum over y and

Sin Eq.(2.6) can be carried out -o give:

e (kj)+o (ot) e (-k'J') = f eU(j) +(uOp e (0')

=-Cj (t') j,.(2.7)

S to e tue inc th $•(0t) matrix has
This result is easily seen to be true since the ( m i

exactly the same form as the dynamical matrix for a given choice

of t.

The number of values of the index t is determined by the

number of bonds in the perfect crystal that cross the boundary.

For our models, this number is two representing the bonds between

atoms 0 - 1 and 0 - 2. Thus the terms Cj(t) become:

(Model I)

Cl (1) = C1(2) =

C2(1) = C2(2) = ot

C3 (1) = C3(2) = (2.8)

(Model II)

CI(1) = C1 (2) = X

C2(1) = X ; C2(2) = y

C3 (0) = y ; C3(2) = X (2.9)

Equation (2.6) can now be written:

jk _y2 ) = 6i,6 (k'-k (k ) 1-k v(kj)v (-k ') (2.10)
V(kj ,-k Y tI,2
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where:
Y i~k x(l.)

v.(kj) = 2 J ei2-'- (singkx() (•.ii)

Being able to express the Vkj,-k'j',-y2 term in separable

form as in (2.10) is an important step in the evaluation of the

5pecific heat. The ability to do this led MW to use a model which

contained only central interactions. In our calculation, the fact

that the eigenvectors are independent of the wave vector k allows

us to write (2.10) for a wide range of different models.

By substituting the expression (2.10) into Equation (2.5),

we obtain the equation:

t~kj,k'j',-y2 6 (kx~x (k+k')Z, v v( jk)v(k

- 6D k' 5(k -k") 6 (ky-k) v (kj)-v (-k".j") t (k-j ", k' j _y2

t lff Xx y y) y 2 + 21 t(kjkj ,)

(2.12)

The solution of this integral equation with separable kernel is

straightforward with the result:

t(kj,-kj,-y 2) V ,(kj)[I-M(kkj,_y 2 )]4,v,,(_kj) (2.13)

where:
2) ~ v t(-kj)v vt(kj)

Mv,(kk iy 2  
= y2 2 (2.14)

k z Y +Wji (k)

Finally, the function n(y ) in Equation (2.4) becomes:

S0vI(kj) vt, (-kj) -l
i(y) _ ' • 2 +(k)] 2 [I-M(kxkyi'-y )]2 , (2.15)
k3 ,tt I[y +'U(k
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Strictly speaking, our choice of a non-primitive unit cell

for this problem leads to six phonon branches iL the first Brilloui',

zone as shown in Figure 2. The optical phonon branches, however,

are extensions of the acoustic phonon branches from the neighboring-

zone. This means that by using an extended zone scheme we can

treat the problem as if there are only three independent phonon

branches. Therefore the sum over 'wave vector k and branch index

j can be converted to integrals as:

6'/a 0  TT/a 1  2rr/a 1

0LZ 3 - dkf dky fdkz (2.16)
k j=1 32T T j=l

-nt/a 0  -nt/a 1 -27/a 1

where S is the surface area of the crystal after the cut is made,

and the limits on the integral over kz indicate the use of the

extended zone scheme.

Wc separate out the suia over j from Equation (2.15) by

defining: 3
0l(yl) 0 i fl(y 2 (2.17)

j=1 *

Thus we obtain: nt/a r /a

. 2) fdk fdkynyl 32TT3 d x f y

-n/a 0  -n/a 1

x Jt,(kxkyj,-y") [ I-M(kxk y, (2.18)

In this expression we have obsorbed the integral over k into theZ

term ) as:

f,(kZ dz [yl+U 2 (k)] 2  (2.9)

-2n/a 1
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2In terms of integrals the M(k k j,-y2) matrix becomes:x y

2 --/ a 1I
L za 1 v (-kj)v , (kj)

M (kxk~ , -y)4 dk~ 2(2.20)
y 4TT f [y 2-i+W.2(k)]

-2rr/a 1

To determine the long wavelength limit, we expand the relevant

expressions in terms of the lattice parameter a° and keep only those

terms of lowest order. In taking the limit as a° - 0, the density

and the elastic constants must remain finite. This implies that

the mass m is of order a and the force constants are of order a0 .

The frequencies of the perfect crystal normal modes in the

long wavelength limit can be written:

2 2 2 2 2 22w2(k) = c2  kx + c. k2 +c 2 k2  (2.21)m() JX Jy y jz z

2
where the coefficients c2 for each model are found by comparison

with Equations (1.12), (1.13), and (1.14) in the longwavelength

limit. The matrix of the values c 2  for Model I is:

(Model I)

2 02

1 1 j (2.22)

For Model II, we have the added complication that the frequency

expressions for modes j = 2,3 have a term that involves the product

of k and k In the long wavelength limit, the lormnal mode fre-
y z

quencies are:
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2 + (y+X)k2a2 +22
2( x o y + I

- i(Y-X)k) yakaI (2.230)

Mw3(k)= Xk ao + ¼I(y+X)k ) k a22

+ ½ (y-X)k a kza (2.23b)

These frequencies can be put into the form (2.21) by a change of

variable.

(¥+X)"2; k'a =k a- k azi z 1 (y+X) y 1

j =3; kza kza + (2.24)z 1 z 1 (y+X) kyaI

with the result:

222 X 2 2
WOn2ntk) kk Xa a1+ k ¼ka+4(y+k)(k:al)m

mw 2 (k) =Xkx2 a2 + y-Xy~-) k 2 a2 2 + 2I(y+X)( ) 2 (2.25)

Thus, if we remember for the time being that the wave vector com-

ponent k is different for each mode j, then the c 2 matrix for

Model II is:

(Model II)

2 Y X X

2 a2  2y X(y+_)
Cj( m X

X 2y•( •(+X) (2.26)
(Y+_
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i
In changing the integration variable from kz to k' or k" as

z z

in Equations (2.24), the only effect is to add a constant to the

integration limits. Before taking the long wavelength limit, the

integrand is periodic in the extended zone scheme. Therefore add-

ing a constant to the limits of the integral has no effect on the

value of the integral. The same is true in the long wavelength

Slimit provided the new integration limits always spsan the origin.

This last condition is always met for both cases; therefore:

2,T/a 1  2rr/a 1  2T/a
Sf f ff k k - f d~(2.27)

-2TT/aI -2rT /a -2TT/a 1

and we can forget the distinction between kz , ,and V that
z z

we made when we wrote the c2 matrix in (2.26).

The J4,ý(kxk j,-y 2 ) matrix elements can be written in the long

"wavelength limit as:

11' xy 4mL~ f 2 [d 2  ~221 2a
-•r/a i J kz]

C.(2) 4(k-k )aJ22(kxkyj _y 2) dk ....

22 yz 2 z [d2 + c2 k 2 ] 2

,Jl 2 (kxkyJy 2 ) = _ e2

"z 2 2

-2r/a1  (2.82 )
i (k kkkj,-ye

1 2 k 21 x2

1 (2.28)
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where:

d 2. y22 k 2  (2.29)j jXx jyky

These expressions are valid for both models and for all j. The

limits of integration can be extended to i w since the integrands

ai. properly convergent. The terms in the integrand that are odd

in kz vanish, and we obtain:

J 1 l(kxkyjy-Y2 ) = -Cj(1)[P + Qky2

J 2 2 (kkyj,_y 2 ) = -Cj 2)[P + Qky2]

J 1 2 (kkyj,-y 2) = -[Cj(1) Cj(2)]½[P-Qk2 e-iik a

= J21(kxkyj,-y2 (2.30a)

where: 2

P 0 4mLzdjcj 2
ejz

2
Q U4mLdjc (2.30b)

All matrix elements are of order a .
0

The Mgt(kxk yj,-y 2 ) matrix elements in the long wavelength

limit can be written:

kxkj_2) /2 aoC (1) 2(k+k) 2 a2
2 0/ a 0(1) 1

S-Y 16Tm dkz d 2 +C2  k 2

-2-r/al j jz z
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2 - ia C (2) 12-/ I (kzk. a2

-2Tr/a 1

(2k ao[Cj(l1C2(2)]A eilk ad

2 xj -y) l6rrm

2TT/a 1  (k 2 _k2  2

dk 2 2 2 M21(kxk y,_y 2)J Z d.cj k

-2r/a 1  (2.31)

Again, these expressions are valid for both models and all j. Some

these integrals do not converge when the limits of integration

are extended to - •. Hence, we retain finite limits for those

integrals that diverge and change the limits of the other integrals

to - • to obtain:

Ml(kxkyj,-y2 2 C(1) [R - S + Tk2

M2(kxkyj,-y 2 ) = C0(2) [R - S + Tk2

M 2(kxkyj,-y 2 ) = [C()C.(2)]i ER - S - TkO] eikyal

= M21(kk j, -y 2) (2.32)

where: 2
aR 0

2mc 2

2 a3 d.

8mc 3 z

Ij



f2 3
3 23

T 8mdcjz (2.33)

The coefficient R is of order a-1 whereas S and T are of order a0
0 a 0

All three terms must be retained in the limit of a ' 0, however,
2 -1

until after the inverse matrix [I - M(kxkyj,-y _y2)]-1

The determinant A(kky. jx'-y 2 ) of the matrix

I - M(k k j,-y is:x y

A(kxkyj,-y 2 ) 1 - [C.(1)+C.(2)]R + 4TRCj(1)C.(2)k 2

2+ [C (1)+C (2)][S-Tkh]
3 3 y

- 4TSC.(1)C (2)k 2  (2.34)
3 Jy

Of the five terms on the right hand side, the first two are of
1

ordcr 1, the second two are of order a0 , and the last is of order20

ao. The two terms of order 1 when writcen in full are:

1 - [C.(l)+C.(2)] R = 1 - o[ j (2.35)
2mc2.jz

These terms identically vanish because:

a2 [Ca C() +C (2)]

Cz 2m (2.36)

for all j and for both models. Thus, the lowest order of the

determinant is a01 and can be written:

A(kxk yj,_y2 4_ j dao y2 + c 2x kx c2Jy k y (2.37)Ic d
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where-

a2 [C (1)-C (2)] 2
-2 2 0 (38C jy jy 2m [C, (1)+C (2)] (,&.38)

011

The lowest order of the inverse matrix, then, is aoI and can be0

written: I ilk a1
Cj (1) [Cj ()C (2)] e

½ -ilk a

[I- M(k k j,-y 2)l, = 3

X 3"yX-
A(kxkyj,_y2) [C.(1)+Cj(2)]

(2.39)

Thy sum of the products of the J matrix elements and the M

matrix elements that appear in (2.18) is:

D t• J (kk•y 2y) [I-M(kk ,-y 2)1 (.

where :

22 k2 22

•i2 = y +cjxkx+ k 2  (2.41)
2TT 2

The integral in (2.18) for the function f2j(y2) can now be written

in two parts as:

r2l = a2 (1 + .(2)(y (2.42)

where:

[2 2 22+-



25

-n / a -n/ a 1f l)(y2) 0 dk dky I+2 k + 2 k

For tl/ao fo/ar Y i Ctjx r ovcejy k Y
(2.43)

and So(C 2 ) /a° 0T/a )2

and/

(l2) (y 2) 0 Y 2jy dk dk y (.4

16TT 2 x (2.45)

-rr ao/a -3lax

For the term (1) (y2), the limits for the integral over k can be

extended to and the integration can be carried out directly

to give: 
T/^(1) (2)

... l k2+ k2 .½ (2.45)
J16Tjy fxx [Y 2 x k

SY -17/a0 x

For this integral, the limits must remain finite until after tbe

Sintegration is performed. kx=TT/a°

In the limit as a° 0 , this becomes:

S(1) (y2)- 0 ooggyl + constant (2.47)

167- 8•cj x• y

For the term (2)y2) we split the integrand as:

2c -c2 )k Id4"A 2 _k•-,2 (2.48)
d d2 2 +c2. 2,2. k2 y +c" k2+c2 k2

jx X jyy jxx jy y
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Thus, aside from different coefficients, the resulting two inte-

grals for Q(2) (y2) are of exactly the same form as the integral

for 0l) (y 2 ) in (2.43). Thus, we obtain directly:

Q- o 0 ) logjyj + constant
8 ( C jxj Y Cjx~jy) 

(2.49)

By substituting the results (2.47) and (2.49) into Equation (2.17)

and comparing with Equation (2.2), we obtain for the term A:

ScJ Y-C JY (2.50)
so = 1- 1 +

j=,23 Cjxjy jy

For Model I, the second term in the sum vanishes because the

term Zjy = cjy for all j. Thus, by using the identifications in

(2.21) and (2.22) we obtain:

(Model I)

A = 0 1 + 2 (2.51)
8Trrc2 (l+r2)2

ct S<where: r = - (2.52)

and c and c are the longitudinal and transverse velocities of

sound respectively in the bulk crystal (00) directions.

For Model II, the second term in (2.50) vanishes for the mode

j 1, and is the same for modes j = 2 and j 3. For this model,

the term cjy is:

j=2,3; C jy c 1 i- (2 cjy (2.53)

• m • • m m Jy
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so that the coefficient A becomes:

(Model II)

A ,0r( 1+ (2.54)

Dobrzynski and Leman6 calculated the specific heat using

Model II for the (100) surface by a different method and obtained

the result:

(Model II, (100) surface)

A = 2 i + 2r) (2.55)
81Tr c -

In the isotropic limit where r - 1 and x 1, the three results

(2.51), (2.54), and (2.55) reduce tc"

3S
Aiso 8nc 2  2. bb)

which agrees with the result of Maradudin ei.al.

The value of the coefficient A for the surface of an isotropic

solid has been determined from a correct continuum calculation

to be: 
11

A 2S0 (2 ) (continuum) (2.57)

The fact that our value of Aiso is 10% lower than the continuum

value is not too surprising since our models are not rototionally

S~12
invariant.

For small deviations from isotropy, we introduce the quantity

= 1 -r (2.58)
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To lowest ordor in A, the coefficient A for the three results

(2.51), (2.54), ind (2.55) becomes:

A = A (1 + A) (2.59)

The fact that we find the deviation of the specific heat for small

deviations from isotropy to be independent of the surface and model

f0or the two surfaces and two models considered supports the belief

that the expressions give meaningful qualitative behavior in this

limit.

III. CONCLUSIONS

(1) We have found the change in the specific heat at low

temperatures due to the (110) surface in a cubic monatomic lattice

for two simple interatomic force constant models to be:

(Model I)

3kB3C( 3)( 22
AC (T) BC 1 + 2 J SoT 2  (3.1)

!':,~ rc l+r2 -"

(Model I(I)

AC (T) = T (3.2)
v 42 rc2 + 42- r X)s

To our knowledge, this is the first det-ermination of the change

in the specific heat due to a surface that is anisotropic.

(2) We have shown that the (110) surface of a simple cubic

monatomic lattice gives rise to Rayleigh waves that are split cff

from the bulk modes for very simple force constant models. The

surface waves arise even: for the case where the atomic motion

normal to the surface is totally uncoupled from mction parallel

to the surface. The only condition needed to obtain Rayleigh waves

L _
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is that the "bonds" between atoms on opposite sides of the surface

Le oblique to the surface.

(3) We have provided a second example of the practicality

of the Green's function method suggested by Maradulin and Ashkin 1 0

in calculating the low temperature surface specific heat. The use-

F fulness of the method depends upon the ability to express the

resulting integral equation in separable form. Maradudin and

Wallis succeeded in doing this by assuming central force inter-

actions. This paper succeeded in doing this by using the fact that

the eigenvectors for the assumed models are independent of wave

I vector.

[ (4) We have found that the value of the surface specific

heat for the two models in the isotropic limit is I0% lower thlan

the value found by correct continuum theory. We believe that this

discrepancy is due solely to the fact that the assumed models do

not satisfy the rotational invariance condition.

(5) We have shown that as the longitudinal velocity of sound

increases relative to the transverse velocity of sound for values

that nearly satisfy the isotropy condition, the value of the surface

specific heat also increases. This result is independent of the

model and surface to first order in the deviation from isotropy

for the two models presented and for the (110) and (100) surfaces.

I2
F
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FIGURE CAPTIONS

Figure 1: The atomic configuration and unit vector designation

for the (110) surface ol a simple cubic monatomic

lattice. The unit vector A is perpendicular to the

y-z plane shown and the atoms designated 5 and 6 are

located at ± xa 0

Figure 2: The dispersion curves for the bulk and surface phonons

propagating in the y direction for Model II where the

force constants are related by y = 2X. The bulk mode

dispersion curves for Model I are the same as those

shown here if the force constants 6 and 0 are identi-

fied with y and X respectively. With this identifica-

tion, the surface mode j = 1 is identical for the two

models but the degenerate modes j - 2,3 are higher for

Model I by a factor of (9/8)2.

Figure 3: The relation between the complex wave vector kz and the

wave vector k for Models I and II. The attenuation co-
y

efficients for all modes in Model I and for the mode

j - I for Model II are independent of the force con-

stants and diverge as ky approaches the zone boundary.

The real part of the wave vector k vanishes for these

modes. The real and imaginary parts of kz for modes

j 2,3 in Model II are shown for the case y 2X.

[ m w mm m m mu • 2
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